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Abstract
Background: Many current gene prediction methods use only one model to represent protein-
coding regions in a genome, and so are less likely to predict the location of genes that have an
atypical sequence composition. It is likely that future improvements in gene finding will involve the
development of methods that can adequately deal with intra-genomic compositional variation.

Results: This work explores a new approach to gene-prediction, based on the Self-Organizing
Map, which has the ability to automatically identify multiple gene models within a genome. The
current implementation, named RescueNet, uses relative synonymous codon usage as the indicator
of protein-coding potential.

Conclusions: While its raw accuracy rate can be less than other methods, RescueNet consistently
identifies some genes that other methods do not, and should therefore be of interest to gene-
prediction software developers and genome annotation teams alike. RescueNet is recommended
for use in conjunction with, or as a complement to, other gene prediction methods.

Background
Computational gene prediction methods have yet to
achieve perfect accuracy, even in the relatively simple
prokaryotic genomes. Problems in gene prediction centre
on the fact that many protein families remain uncharac-
terised. As a result, it seems that only approximately half
of an organism's genes can be confidently predicted on
the basis of homology to other known genes [1-3], so ab
initio prediction methods are usually employed to identify
many protein-coding regions of DNA.

Currently, the most popular prokaryotic gene-prediction
methods, such as GeneMark.hmm [4] and Glimmer2 [5],
are based on probabilistic Markov models that aim to pre-
dict each base of a DNA sequence using a number of pre-

ceding bases in the sequence. These methods are
undoubtedly very successful, with published sensitivity
rates between 90% and 99% for most prokaryotic
genomes. However, as the sensitivity rates of the methods
rise, specificity generally tends to fall, and while the appli-
cation of sophisticated post-processing rules can correct
many false-positive predictions, no method has yet
achieved 100% accuracy. This is especially the case in the
more complex eukaryotic gene-finding problem, where
less than 80% of exons in anonymous genomic sequences
are correctly predicted by current methods [2,6-8].

For the foreseeable future it does not seem that the exact
set of genes in any organism can be automatically pre-
dicted by any single computational method. In practice,
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this has meant that the best predictions are to be found by
combining evidence from two or more independent
methods [3,9]. Genome annotation teams often compare
the evidence offered by multiple gene-finders in order to
predict the gene complement of a given genome. Because
of the degree of 'manual' annotation that now takes place
in the major genome sequencing centres, a gene-predic-
tion tool will be of practical use if it can exclusively predict
genes that other gene-finders cannot.

Many ab initio gene-prediction methods are based on sin-
gle models of protein-coding regions and therefore make
the implicit assumption that all protein-coding regions
within a particular genome will share similar statistical
properties. However, evidence has mounted that single
gene models of intrinsic coding measures are no longer
fully satisfying [10,11]. The problem with single model
methods centres on the degree of oligonucleotide compo-
sition variation that exists within most genomes. On the
codon level, intra-genomic variation in codon bias has
long been correlated with expression level [12]. Counter-
balancing the translational selection theory of codon bias
is the effect of mutational bias [13,14]. Many other, often
more subtle levels of variation have been recognised over
the years, with many disparate evolutionary pressures
shown to be acting on codon usage bias [15]. For exam-
ple, strand-specific codon usage biases have often been
recognised [16-20], leading to more general studies of cor-
relation between the location of the gene on the genome
and codon bias [21], and the more specific discovery of a
A+T skewed bias near the replication terminus of bacterial
genomes [22]. Other effects shown to shape codon usage
are gene length [23] and selection at the amino acid level
[24]. It has also been suggested that content variation can
occur at the exon level in eukaryotic genes, the possibility
existing that some exons in a gene may have different
codon usage patterns to others [1]. Given that some of the
above pressures on codon usage have only recently been
discovered, it is likely that some more subtle patterns have
yet to be recognised, and therefore it is difficult to predict
the level of compositional variation that will be present in
an anonymous genomic sequence.

The need for gene-finding methods that can overcome the
problems presented by intra-genomic variation was recog-
nised and addressed in the case of prokaryotic genomes by
GeneMark-Genesis [25], which derives two models for
each genome according to typical and atypical codon
usage clusters in that genome. This increase in the number
of gene models led to an increase in accuracy of the Gen-
eMark method. While Hayes & Borodovsky experimented
with a third ('highly-typical') codon usage cluster and an
associated model in some cases, they did not see the need
to further sub-cluster the atypical codon usage set in order
to make even more models. Overly sub-clustering the

training data would not be useful in the case of Markov-
based methods, as the data contained in each sub-cluster
may not allow for a good estimation of model parameters.
However, generating more specific models for subtle pat-
terns found in the training set can only be advantageous if
it can be done in a way that minimises loss of overall accu-
racy and produces no extra false-positive predictions.

This paper aims to show how the Self-Organizing Map
neural network algorithm can be used to automatically
identify the major trends in oligonucleotide variation in a
genome, and in doing so provide multiple gene models
for use in gene prediction. It will be explained that this
approach is an effective solution to the problem of intra-
genomic variation. Specific examples of genes predicted
only by this method are offered, thus demonstrating the
usefulness of the approach in genome annotation.

A further advantage of using the Self-Organizing Map for
gene prediction is the ability of the algorithm to use com-
plex descriptors as measures of gene coding potential. We
demonstrate this ability using relative synonymous codon
usage (RSCU) as our measure of gene coding potential.
Unlike other gene coding measures, RSCU is not based on
the absolute frequency of k-mers, but instead describes
the codon choice for each amino acid. Markov chains
based on the RSCU measure would have transition prob-
abilities that are conditioned on the underlying amino-
acids. Although theoretically possible [26], the practical
computation of such Markov chains would give rise to
major difficulties. Therefore, the ability of our approach
to make use of a sophisticated gene coding descriptor such
as RSCU is a distinct advantage of our approach over
Markov model based methods.

Implementation
Coding measure
In this study, relative synonymous codon usage (RSCU)
vectors are used as the measure of protein-coding poten-
tial for a given window of sequence. The RSCU value for a
codon 'i' is defined as:

where Obsi is the observed number of occurrences of
codon 'i', and Expi is the expected number of occurrences
of the same codon (based on the number of times the rel-
evant amino acid is present in the gene and the number of
synonymous alternatives to 'i', assuming a uniform choice
of synonymous codons). In order to make the data more
compatible with the mathematical methods used, the log
of each RSCUi value is found so that the resulting value is
positive if the codon is used more than expected in that
gene, and negative if the codon is used less than expected.

RSCU
Obs

Expi
i

i
= ( )1
Page 2 of 9
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/23
Values were capped at ± 10, and set to 0 in the case of the
non-occurrence of an amino acid in the sample. Taking
the RSCU values for each of the codons with synonymous
alternatives (and ignoring the 3 stop codons and the Trp
and Met codons), each sample can be represented by a
vector of 59 values.

Self-Organizing Map
The Self-Organizing Map (SOM) is based around the con-
cept of a lattice of interconnected nodes, each of which
contains a model. The models begin as random values,
but during the iterative training process they are modified
to represent different subsets of the training set. In this
work for example, the training set and the lattice node
models are 59-dimensional RSCU vectors, and the models
change during training to become similar to common or
repeated patterns in the training set. The algorithm is fully
described elsewhere [27], but we briefly summarize for
our context:

(1) A vector (Xi), corresponding to a gene's RSCU values,
is loaded from the training dataset.

(2) The lattice node is found whose model vector most
closely resembles the input pattern. This node is denoted
the 'winning node'.

(3) The winning node's model, W (as well as a certain
number of 'neighbourhood bubble' node models) is
changed to be more similar to the input vector by the
equation:

Wnew = Wold + η (Xi - Wold)  (2)

(4) If all the vectors in the training dataset are processed,
we say that an epoch has been completed. In this study, all
SOMs are trained for 3000 epochs.

The 'neighbourhood bubble' mentioned in step 3 is a
group of nodes centered at the winning node. The radius
of this bubble is initialised to be large and is linearly
decreased during training until only the winning node's
model is changed. Changing the models on the winning
node's neighbours allows the clustering of similar pat-
terns. The learning rate (η) in step 3 is initialised close to
1 and is also linearly decreased during training until it is
held constant at a predefined fraction. The linear decrease
in learning rate means that each node's model will not get
changed as much or as often as training progresses. Two
recognised phases of training result; an ordering phase
where the lattice takes its general shape, and a conver-
gence phase where the nodes get more specialised to
respond to specific patterns.

In this work, similarity between two vectors is measured
by finding the cosine of the angle between them. A cosine
of 1 represents exactly similar vectors while a cosine of 0
represents exactly dissimilar vectors.

The SOM is used mainly in data visualisation, as it can be
effectively used to reduce high-dimensional data to a two
dimensional map. One of the main strengths of the
method is the ability to automatically cluster similar pat-
terns in its training set. In the context of codon usage data,
the SOM has been previously used to cluster genes on the
basis of similar codon usage [28-30]. However, the previ-
ous studies have concentrated on identifying genes with
atypical codon usage and hypothesising their origin as
horizontally transferred genes. It has since been shown
that atypical codon usage is not sufficient evidence to
show that a gene has origins in horizontal transfer events
[22,31]. In contrast, this study uses the fact that once a
SOM has been trained using codon usage information,
the nodes of the SOM encapsulate models that are repre-
sentative of the major codon usage patterns within the
training set.

If a new sequence is inputted to a trained SOM, we can
easily be told which node's model is most similar to this
new sequence, and most importantly, how similar. The
similarity (cosine) score is then converted to the probabil-
ity that the sequence is protein-coding. This is achieved by
finding the mean cosine score received by a set of random
length, random sequence genes that are generated using
the same nucleotide bias as the mutational bias found in
the genome. Using the mean score, each similarity score
can be converted to a z-score, which is in effect the prob-
ability that the sequence is not a random sequence.

Using the SOM to find genes
Separate SOMs are trained for each of the 15 genomes
under test. The SOMs are each 15×15 nodes in size and
trained for 3000 cycles. Finding genes via homology
search is usually the first step to be carried out in a
genome annotation process, so our training sets consist of
all genes in the relevant organism that were previously
confirmed by homology searches and are also at least 750
bp long. Note that unlike other gene-finding methods, no
statistical knowledge of non-coding DNA is necessary as
part of the SOM's training.

In analysing an entire genome sequence, a sliding window
is used to split each of the six reading frames into small
samples. The default window size is 110 triplets, which
has been chosen as a balance between having a window
size long enough to evaluate a meaningful RSCU vector,
and short enough to predict short genes. Each window is
offset from the next by 10 triplets. An arbitrary probability
score of 0.1 is used as the threshold for deciding if a
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sequence was protein-coding, and all samples that scored
higher than 0.1 are recorded as predictions. If a stop
codon lies in the sample, the gene prediction is annotated
as having ended at that point. Note, however, that no
effort is made to find stop codons if they are not within
the prediction, and no effort whatsoever is made to find
any start codons in the prediction.

Post-processing the predictions
Once all the samples are processed, some simple post-
processing is carried out. Naturally, all same-frame con-
current predictions are merged. Predictions that are totally
overlapped by another prediction are deleted if they are
less than 75% the length of the other. Similarly, any pre-
diction in which more than half its length is overlapped is
deleted if it is less than half the length of the other predic-
tion. Alternatively, any prediction that is less than 90% as
long as the overlapping prediction and receiving a lower
score is deleted. Finally, any prediction that is overlapped
on both ends to a total overlap of at least 70% is also
deleted. A prediction size of 75 codons was found by trial
and error to be the smallest gene-coding region that could
accurately be found using RescueNet.

While the above rules aim to delete smaller erroneous pre-
dictions, it is recognised that the loose nature of the rules
leave room for many other overlapping predictions. How-
ever, it was found that in many overlapping cases it was
difficult to decide which prediction to delete. Therefore,
the best solution is to leave both predictions rather than
misleading an annotator by giving only one, possibly
erroneous, prediction.

In assessing the accuracy of our method, we had to take
into account that our method will not predict most start
sites, and some stop sites, exactly. We assume that our
method will be of most use to annotation teams who rig-
orously inspect the results of our method in conjunction
with the results of other gene prediction programs. Such
annotation teams base their final genome annotation on
widespread evidence, so the fact that our method may
produce inexact start and stop sites will not be a major dis-
advantage. Therefore, a correct prediction is defined here
as one that predicts more than 50% of an annotated gene
in the correct frame. This criterion means that only predic-
tions that are useful to annotators are considered to be
correct.

Results and discussion
Evaluating accuracy rates
Previous studies discuss the possibility that the GenBank
annotation of various genomes may be incomplete or
incorrect in some cases [5,32]. Since many GenBank
annotations are not experimentally corroborated, this
possibility remains strong. Large-scale benchmarking of

gene-prediction algorithms is therefore difficult, because
few 'gold standard' annotations exist for prokaryotic
genomes. Also, in most cases hypothetical gene annota-
tions in the public databases have their roots in the pre-
dictions of an ab initio method, thus biasing any
comparison of accuracy in favour of the particular method
used in the annotation of that genome. However, for the
purpose of defining accuracy in this study we must
assume that all GenBank annotations are correct and
complete. Sensitivity (Sn) is defined here as the percent-
age of GenBank gene records that are predicted correctly
by our method. Specificity (Sp) is defined as the percent-
age of total RescueNet gene predictions that are correct.

Table 1 shows the results of RescueNet's predictions in 15
genomes. All results were generated using the default set-
tings described above. Sensitivity and specificity values for
each genome are shown, along with sensitivity values for
those genes that are above the prediction length threshold
of 75 codons (225 bp) and sensitivity values for those
genes that have database matches.

Sequence data used in this study include the following 15
genomes and associated published genes available from
the GenBank database: A. aeolicus [33], B. subtilis [34],
Buchnera sp. [35], B. burgdorferi [36], C. jejuni [37], D. radi-
odurans (chromosome 1) [38], E. coli [39], H. influenzae
[40], H. pylori [41], M. genitalium [42], M. jannaschii [43],
R. solanacearum [44], S. coelicolor [45], Synechocystis sp.
[46], and Y. pestis [47]. These genomes were chosen to be
representative of a wide range of GC content.

High G+C content genomes
Three of the genomes tested have very high G+C content
(D. radiodurans, R. solanacearum and S. coelicolor). High
G+C content genomes present a problem to many gene-
finding methods because of the relative infrequency of
randomly occurring stop codons. The scarcity of stop
codons has the effect of a large number of long, overlap-
ping ORFs occurring in the sequence, relatively few of
which are actually protein-coding. Many of the current
gene-finders fail to discriminate accurately between cod-
ing and non-coding ORFs in this type of situation.

In our method, the relatively high specificity in each high
G+C content genome suggests that RescueNet may have
advantages in their annotation (see Table 1). To illustrate
a case where RescueNet may be of practical use, we can
consider the ORF annotated as DR1142 (see Figure 1)
from D. radiodurans. This ORF is annotated to be protein-
coding on the basis of the Glimmer2 prediction only. The
RescueNet prediction in this area overlaps DR1142, but
on the opposite strand. This type of situation, where a Res-
cueNet prediction directly contradicts a GenBank/
Glimmer2 annotation, occurs at least 23 times in the D.
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radiodurans genome. It is entirely possible that the
Glimmer2 predictions are wrong in some of these cases,
and the RescueNet predictions correct, but this cannot be
proven without biochemical characterisation of the rele-
vant gene. However, in the specific case of the DR1142
annotation, the RescueNet prediction has a much stronger
database match than the GenBank annotation, and so has
a high possibility of being correct.

Another interesting pointer to the advantages of Res-
cueNet in high G+C content genomes is the substantially
higher percentage of genes with database matches that are
correctly predicted by RescueNet (see Table 1). In D. radi-
odurans, for example, 92.54% of genes with database
matches are correctly predicted by RescueNet compared
with only 84.28% of the total GenBank gene annotations.
These figures suggest that hypothetical genes that are pre-

Table 1: Accuracy of RescueNet in 15 bacterial genomes.

Organism GC % Number of Genes 
Annotated

Training Set 
Size

Sn. (%) Sn. >225 bp (%) Sn. Conserved (%) Sp. (%)

Buchnera 26.2 564 292 88.65 91.24 89.97 96.18
B. burgdorferi 28.6 857 403 90.54 96.39 95.66 98.02
C. jejuni 30.6 1654 673 90.14 95.08 92.14 99.23
M. jannaschii 31.4 1715 692 88.39 91.82 91.02 96.50
M. genitalium 31.7 483 301 89.44 91.52 89.89 92.32
H. influenzae 38.0 1754 885 91.56 96.34 93.10 98.01
H. pylori 38.9 1593 712 91.39 96.80 95.70 95.49
A. aeolicus 43.3 1517 723 95.78 96.54 95.57 87.80
B. subtilis 43.5 4220 1832 87.93 94.95 89.86 89.47
Synechocystis 47.6 3169 954 93.18 96.53 91.55 90.95
Y. pestis 47.6 4043 1640 91.04 94.84 93.66 88.29
E. coli 50.8 4290 1983 89.39 92.85 92.54 89.04
D. radiodurans 67.0 2622 1436 84.28 85.65 92.61 95.50
R. solanacearum 67.0 3442 1748 84.74 88.60 89.82 93.20
S. coelicolor 72.1 7851 956 88.35 91.55 91.55 90.10

The genomes are listed according to ascending G+C content. For each genome, the table shows: Genome GC content (GC %), the number of 
genes annotated in GenBank for that genome, the number of genes in the RescueNet training set, overall RescueNet sensitivity (Sn.), the sensitivity 
of RescueNet in finding genes longer than the 225 bp minimum prediction size (Sn. >225 bp), the sensitivity of RescueNet in finding genes that have 
been confirmed by homology with other genes in GenBank (Sn. Conserved), and finally, overall RescueNet specificity (Sp.)

Screenshot from the Artemis sequence viewer [49] showing a sample region of D. radiodurans and accompanying RescueNet predictionsFigure 1
Screenshot from the Artemis sequence viewer [49] showing a sample region of D. radiodurans and accompanying RescueNet 
predictions. Annotated genes are shown as white blocks, and predictions are shown in-frame as shaded blocks. Note the rela-
tive infrequency of stop codons (vertical lines in each frame) and the many ORFs that are not protein-coding regions. Note 
also the selected gene DR1142 and the contradicting RescueNet prediction. DR1142 is a hypothetical gene, predicted to be so 
by Glimmer2, and there is a strong possibility that the CDS marked by RescueNet is the correct prediction. The possibility is 
also raised by RescueNet that the gene DR1143 may be longer than previously annotated and contains a frameshift.
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dicted only by Markov-based methods are poorly recog-
nised by RescueNet, possibly because many hypothetical
genes in high G+C content genomes may in fact be false
gene predictions.

Predicting the location of frameshifts
The general location of frameshifts within a gene
sequence can be found by our method. Two features of
our approach facilitate this. Firstly, even though the over-
all codon usage of a frameshifted gene could seem unu-
sual, the two coding sections of the gene should each
retain the organism's native codon usage. Secondly, our
approach does not require that a prediction be bounded
by a start and a stop codon. The sliding window used in
our algorithm can therefore predict the correct coding
frames each side of the frameshift.

In an interesting example in Figure 1, two RescueNet pre-
dictions overlap the D. radiodurans gene DR1143 in such
a way that it seems that there may be a frameshift that
extends the protein-coding region of the gene past the
annotated stop codon. In fact, combining the two Res-
cueNet predictions offers a better database match to the
same genes that the original annotation matches. This
increases the possibility that the actual gene contains an

authentic frameshift or at least that the extra RescueNet
prediction is an evolutionary artefact.

Figure 2 shows another example of frameshifts which are
detected by RescueNet. In this case, the H. influenzae genes
HI0218 and HI0220 both contain frameshifts, but both
are handled by RescueNet's predictions. Note that the
GeneMark algorithms are known to show the location of
frameshifted regions in much the same manner as we
have described, but our approach has required no modifi-
cation to our basic algorithm in order to facilitate the pre-
diction of frameshifted genes.

Comparison with a Markov-based method
There may be a perception that any method using codon
usage as the coding measure will only give predictions
that are a subset of the predictions given by a Markov-
based method that uses a 4th or 5th order model. To coun-
ter this argument, we compared the predictions of our
method in two genomes (H. influenzae and H. pylori) to
those of the web-based version of GeneMark.hmm 2.1 for
prokaryotes http://opal.biology.gatech.edu/GeneMark/
gmhmm2_prok.cgi, which generated results using two
models; the 'typical' and 'atypical' models.

Artemis screenshot showing a sample region of the H. influenzae genome and associated RescueNet predictionsFigure 2
Artemis screenshot showing a sample region of the H. influenzae genome and associated RescueNet predictions. As in Fig. 1, 
the annotated genes are shown as white blocks and the RescueNet predictions are shown in-frame as shaded blocks. Note that 
genes HI0218 and HI0220 contain authentic frameshifts. RescueNet gives two predictions that overlap each of these gene, and 
they meet near the frameshift point.
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The published sensitivity of GeneMark.hmm in the H.
influenzae genome (96.2%, see [4]) is higher than that of
our method, and the published specificity (89.8%) is
lower, so GeneMark.hmm should give more predictions
overall for this genome. However, 11 H. influenzae genes
are predicted correctly by our method which are not pre-
dicted by GeneMark.hmm using 5th order models, and 14
genes are predicted correctly by our method which are not
predicted by GeneMark.hmm using 4th order models. In
the H. pylori genome, GeneMark.hmm has again a higher
sensitivity and a lower specificity (94.0% & 91.3% respec-
tively), but even more genes are exclusively predicted by
our method; 25 genes as compared to the 5th order Gene-
Mark.hmm models and 30 genes as compared to the 4th

order models. Although these genes represent a small pro-
portion of the total number of genes in the respective
organisms, the fact that they are only predicted by Res-
cueNet gives some indication of the advantage of using
RescueNet in conjunction with other gene prediction
methods.

Possible future improvements
RSCU is only one of many possible criterion with which
to measure coding potential (see [48] for a review of oth-
ers). In-phase hexamers are accepted as the most accurate
k-mer frequency based measure of coding potential, and
so their use as the coding measure in a Self-Organizing
Map may offer improvement in accuracy over RescueNet.
However, the larger space dimension of the hexamer cod-
ing measure may force a larger sliding window to be used
and therefore the use of hexamers could actually decrease
the precision of gene prediction.

The future use of alternative coding measures with our
approach may also help to overcome difficulties in recog-
nising genes that are reputed to be horizontally trans-
ferred in origin. Horizontally transferred genes would be
more likely to have dissimilar codon usage patterns to
other genes in the genome. Since our approach currently
relies on the codon usage patterns it finds in the training
set, it is unlikely to mark areas of unseen codon usage as
protein-coding regions. Note, however, we are not sug-
gesting all genes that were not recognised by our approach
are of horizontally transferred origin. There are many
explanations for a gene displaying atypical codon usage,
and codon usage cannot be used as an accurate indicator
of horizontal transfer.

There may be other ways to improve the accuracy of our
method. The current implementation has a rather simple
post-processing step that does not rely on modifying the
prediction in order to include start or stop codons. While
the practise of not constraining a prediction to be bound
by a start and stop codon stands in stark contrast to other
methods, we did not wish to lengthen or shorten any pre-

dictions artificially, since doing so can mislead annota-
tion teams (especially in start site annotation). Relatively
simple post-processing steps may, in fact, be advanta-
geous. Our predictions represent a raw account of regions
of the genome that display typical or native codon usage
patterns, and this in itself may be of interest to annotation
teams who use codon usage plots as the basis for some
genomic feature annotations.

Conclusion
Gene-finding in prokaryotic genomes is still not a com-
pletely solved problem, partly because current methods
use a limited number of models to represent the training
data. In this paper, we have introduced an alternative,
independent approach to the problem. The Self-Organiz-
ing Map approach has the potential to overcome the issue
of variation in the statistical properties of the training set
data, and can automatically train a representative number
of gene-models, depending on the degree of variation
within the training data.

While the current implementation of our approach pro-
duces lower raw sensitivity scores in comparison to estab-
lished Markov-based techniques, we have clearly shown
that our method can predict some genes that other meth-
ods cannot. We have also demonstrated advantages in
annotating the traditionally 'difficult' high G+C content
genomes. Annotation teams who are concerned with the
complete and accurate annotation of a sequenced genome
should find our method useful when used alongside other
gene-finding methods. The relatively high specificity of
our method, coupled with the independent nature of the
algorithm, should make it a useful tool in confirming the
predictions of other software programs and in some cases
pointing out areas of conflicting or contradictory predic-
tions that are worthy of further examination.

Availability
Project name: RescueNet

Project home page: http://bioinf.nuigalway.ie/RescueNet/

Operating systems: Windows, Linux, IRIX, Digital Unix.
Source code also available.

Programming Language: C++

Licence: GNU GPL

Restrictions to use by non-academics: Please contact the
authors.
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