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Chapter 10

SOME DESIDERATA FOR LIBERAL
SUPERTREES

Mark Wilkinson, Joseph L. Thorley, Davide Pisani, François-Joseph
Lapointe, and James O. McInerney

Abstract: Although a variety of supertree methods have been proposed, our
understanding of these methods is limited. In turn, this limits the potential for
biologists who seek to construct supertrees to make informed choices among
the available methods. In this chapter, we distinguish between supertree
methods that offer a conservative synthesis of the relationships that are agreed
upon or uncontradicted by all the input trees and liberal-supertree methods that
have the potential to resolve conflict. We list a series of potential desirable
properties (“desiderata”) of liberal-supertree methods, discuss their relevance
to biologists, and highlight where it is known that particular methods do or do
not satisfy them. For biologists, the primary aim of liberal-supertree
construction is to produce accurate phylogenies and most of our desiderata
relate to this prime objective. Secondary desiderata pertain to the practicality
of supertree methods, particularly their speed.
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1. Introduction

Although the field of supertree construction is young, tracing its origins to
Gordon’s (1986) seminal contribution, there is already a rich diversity of
supertree methods and variants that have been developed or outlined, some
of which are in increasingly common use. Unfortunately, our understanding
of these methods has not kept pace with their explosive development. The
availability of multiple supertree methods means that those who seek to use
them are confronted by methodological choices: which method(s) should
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they use? Understanding the properties of supertree methods must be key to
rational choice.

Here, we discuss some desiderata of supertree methods, the properties
that we might like such methods to have. We have been inspired by the
approach taken by some mathematicians (e.g., McMorris and Neumann,
1983; Barthélemy et al., 1995) to the characterization and exploration of
consensus methods in terms of consensus axioms, well-defined mathematical
properties that they might or might not possess. Thus far, the important
paper by Steel et al. (2000) is the only application of the axiomatic approach
to supertrees. Some of the properties we discuss derive from the literature on
consensus axioms, whereas others have never been discussed in that
literature and originate from a biological rather than a mathematical
perspective. At least some of the latter might be open to formal investigation
as additional supertree (or consensus) axioms. However, we are biologists
rather than mathematicians and our treatment is very informal. As biologists,
we are interested in particular properties inasmuch as they impact upon our
ability to do biology. Thus, we aim to clarify why the properties we discuss
might be considered desirable for biologists, rather than taking their
desirability to be self-evident or axiomatic.

2. What is a supertree?

A supertree is a tree that amalgamates, synthesizes, or otherwise represents
the phylogenetic relationships included in a set of input trees. Under this
loose definition, consensus trees are supertrees constructed in the special
case of input trees with identical leaf sets. The diversity of consensus
methods in evolutionary biology reflects in part a diversity of potential uses
for them (Barrett et al., 1991; Swofford, 1991; Wilkinson, 1994). For
example, strict-consensus methods are used to summarize unanimous
agreement across a set of input trees, thereby identifying those relationships
that are “strictly supported” (Nixon and Carpenter, 1996). By contrast,
majority-rule-consensus methods, which summarize those relationships
occurring in a majority of the input trees, are used, for example, to represent
the results of bootstrapping (Felsenstein, 1985, Wilkinson, 1996),
jackknifing, (Farris et al., 1996), quartet puzzling (Strimmer and von
Haeseler, 1996), and Bayesian analyses (Larget and Simon, 1999). The
utility of consensus methods depends upon what we wish of the consensus
summary, and we might expect the same to be true of supertree methods.

We see four main possible uses for supertrees. For the most part,
applications of supertree methods have sought to produce well-resolved,
large phylogenies from sets of smaller, typically conflicting, input trees.
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Here, supertrees are meta-analytic syntheses of the input trees (Mann, 1990;
Sanderson et al., 1998; Bininda-Emonds et al., 2002) that are intended to
provide a phylogenetic framework for broad comparative studies (for a
review, see Gittleman et al., 2004). Resolution of input-tree conflicts is
hoped for, and thus “liberal-supertree” methods are used. The degree to
which resolution is achieved depends upon the degree to which input trees
provide differential support for conflicting relationships (as assessed by the
supertree method), and also potentially by the degree of effective overlap
between the input trees. Secondly, supertrees might also be used in
quantitative studies of input-tree congruence. For example, outliers or
unstable taxa can be identified using one or more input tree-supertree
distance measures (e.g., DasGupta et al., 1997) or positional congruence
scores (Estabrook et al., 1985). Thirdly, supertrees can be used simply to
explore and identify agreement and disagreement among sets of input trees.
In this case, the aim is to reveal conflict rather than to resolve it, typically
through the use of “conservative-supertree” methods, with any resolution
coming ultimately from additional data or new analyses sought or performed
in the light of the supertree (Wilkinson et al., 2001). Again, supertrees will
be more or less resolved depending upon the extent of conflict and the
degree of effective overlap between input trees. Finally, supertrees might be
useful in identifying where limited overlap between the leaf sets of input
trees is an obstacle to their amalgamation, thereby guiding further research
aimed at providing effective overlap (Wilkinson et al., 2001; Burleigh et al.,
2004). Although all these uses are important, we focus here upon liberal
supertrees that are capable in principle of providing well-resolved meta-
analytical syntheses in the face of conflicting input trees. Thus, we do not
discuss the more conservative strict or semi-strict supertree methods (Bryant,
2002; Goloboff and Pol, 2002), which might be particularly well suited to
the latter two uses.

3. Some liberal supertree methods

3.1 Matrix representations

Trees can be represented by a variety of corresponding matrices. Several
supertree methods combine matrix representations of input trees into a single
matrix that can be analyzed to yield a supertree. Methods differ in the form
of matrix representation employed and the kind of analysis. The average
consensus procedure combines pairwise-distance matrices and uses a least-
squares optimality criterion in searching for the best tree (Lapointe and
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Cucumel, 1997). We refer to this as a matrix representation with distances
(MRD) method (Lapointe et al., 2003). Most practitioners have employed
matrix representations that encode trees as “pseudocharacter” data that are
then analyzed with parsimony, the matrix representation with parsimony
(MRP) approach to supertree construction. In standard MRP (Baum, 1992;
Ragan, 1992), one binary pseudocharacter encodes each internal branch on
each input tree (component or cluster coding), and standard reversible (Fitch
or Wagner) parsimony is used. Irreversible MRP (Bininda-Emonds and
Bryant, 1998) differs only in its use of irreversible parsimony. Purvis MRP
(Purvis, 1995a) uses reversible parsimony and differs from standard MRP in
the matrix representation. Each matrix element splits the members of a clade
from the members of its sister group (or of all possible sister groups in the
case of polytomies) and the root, with all other leaves scored as missing. In
triplet and quartet MRP (Thorley, 2000; Wilkinson et al., 2001), one binary
pseudocharacter encodes each resolved triplet or quartet, respectively, in
each input tree, and standard reversible parsimony is used. Purvis (1995a)
and Rodrigo (1996) suggested, and Pisani (2002) and Ross and Rodrigo
(2004) explored clique analysis as an alternative to parsimony, using
component coding in their matrix representation with compatibility (MRC).
In the special cases of triplet and quartet matrix representations, maximum
parsimony and maximal cliques define the same optimal trees, so that MRC
= MRP. A further matrix representation method involves recoding (flipping)
individual entries in a component matrix representation, moving leaves into
or out of clusters or from one “side” of a split to another so as to render the
matrix compatible. Optimal matrix representation with flipping (MRF)
supertrees are those supported by the matrices requiring the fewest recodings
(Chen et al., 2003; Burleigh et al., 2004).

3.2 MINCUTSUPERTREE

Aho et al. (1981) developed a fast algorithm for amalgamating a set of
compatible trees. If the trees are compatible this method returns a single
supertree that contains all the input trees. Where input trees conflict, the
method yields no tree. The MINCUTSUPERTREE method developed by
Semple and Steel (2000) modifies the Aho et al. method to deal with
conflicting input trees. Essentially, this is done by breaking apart conflicting
clusters in a certain minimal way that ensures several desirable properties for
MinCutSupertrees (for details see Semple and Steel, 2000; Page, 2002).
MINCUTSUPERTREE has some Adams-consensus-like properties (Semple
and Steel, 2000), and whether it is considered liberal or conservative might
depend on whether the clusters in the supertree are interpreted as nestings or
components (see Wilkinson, 1994).
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3.3 Quartet puzzling

Quartet puzzling (Strimmer and von Haeseler, 1996) is a heuristic method
for building resolved, comprehensive trees from sets of quartets that might
or might not conflict. It is, therefore, a liberal supertree method. However, as
normally used, it draws upon the quartet trees inferred for all possible
quartets for the full set of leaves under consideration, using these in a voting
procedure to determine where to add leaves to a growing tree. This is a
special case, and not all quartets will be included in the input trees in the
normal supertree context. Pisani and Wilkinson (2002) indicated the
potential for a quartet-puzzling supertree method, but to be effective the
voting procedure needs modification (Pentony et al., in prep.).

In quartet puzzling, tree construction is iterated with different addition
sequences and random breaking of ties. The multiple trees produced are
summarized with a majority-rule consensus and the frequencies of
relationships taken as an index of support (Strimmer and von Haeseler,
1996; Wilkinson et al., 2003). Each quartet-puzzling iteration can be thought
of as providing a fast and greedy heuristic approximation of the supertree
that contains the largest number of input quartets. Thus, the method is
related closely to quartet MRP. With rooted trees, triplet puzzling (i.e.,
quartet puzzling, but using only quartets in which one leaf is the root) would
be related analogously to triplet MRC / MRP. We can envisage similar
heuristics that choose a starting tree from the input trees and add taxa one at
a time according to inference and fusion rules (Bryant, 1997; Dekker, 1986;
Wilkinson et al., 2000) and greedy local optimizations that approximate
objective functions based on several tree-to-tree distances. A quartet-
supertree method based on Willson’s (1999, 2001) quartet methods has also
been developed recently (Piaggio-Talice et al., 2004).

4. Accuracy

Many consensus axioms describing desirable mathematical properties of
consensus methods have been discussed, but mostly with little consideration
of their relevance to what is desirable or important to biologists. In the
specific context of the construction of liberal supertrees, we believe
biologists are (or should be) concerned primarily with accuracy. By
accuracy, we mean correspondence with actual phylogenetic relationships
(“accuracy with a capital A”), rather than, for example, correspondence
between the objective function of a method and heuristically selected
supertrees. The ultimate aim must be to have accurate phylogenies that
provide maximally useful phylogenetic frameworks for comparative biology
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(Lanyon, 1993). The ability of any method to construct accurate supertrees
under a range of readily modeled analytical conditions can be assessed by
simulation (e.g., Bininda-Emonds and Sanderson, 2001; Chen et al., 2003;
Lapointe and Levasseur, 2004; Piaggio-Talice et al., 2004; Ross and
Rodrigo, 2004). However, the ability of methods to produce accurate trees
depends very much on properties of the data, and, insights from simulations
notwithstanding, we do not know how accurate real supertrees are for the
most part. In the absence of an assessment of accuracy, we can examine
other properties as surrogates. For example, we might investigate whether
supertrees include relationships that we might reasonably expect to be
present, or, conversely, relationships that we would not expect. Similarly, we
can address whether the resolution of conflict is affected by properties of
input trees other than those we might expect the resolution to be based upon
(i.e., properties that are irrelevant to our understanding of the weight of
support for particular relationships). The following is a far from exhaustive
set of such properties.

4.1 Independence

Bryant (1997) gave formal definitions of two “independence” consensus
axioms that relate to the insensitivity of consensus methods to the addition or
pruning of input tree leaves (but which might be characterized in terms of
any well-defined operation on trees). The independence (of irrelevant
alternatives) axiom considers two profiles of trees. If the two profiles can be
rendered identical by pruning some set of leaves from the trees in each
profile, then, if we prune the same leaves from the consensus trees for each
profile, the resulting consensus trees should also be identical. The second
independence axiom states that, given a set of input trees from which some
particular leaves are pruned, the consensus or supertree of the pruned trees
might be expected to be the same as the pruned consensus or supertree of the
full input trees. A consensus method that satisfies the second axiom must
also satisfy the first (Barthélemy et al., 1995).

It seems reasonable that extraneous information on the relationships of
other (pruned) leaves should not impact upon the relationships inferred
among the remaining leaves. There has been little investigation of
independence axioms in the context of supertrees. In this context, input trees
can logically entail relationships in combination that are not present in any
single input tree, so that pruning selected leaves from the input trees could
remove some entailed relationships and impact upon the supertree. In this
case, the additional information is useful rather than irrelevant, and failing to
obey independence axioms would not be undesirable necessarily. The
following three properties might be related to the general idea of
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independence. They are properties that biologists have found or might find
desirable, but which have not been discussed much in the mathematical
literature.

4.2 Sizeless

Suppose we wish each input tree to have equal weight. This might be
reasonable if we had no basis for assigning differential weights. Purvis
(1995a) provided an example showing a bias in standard MRP in cases of
conflict towards relationships in larger trees, and Purvis MRP was proposed
to remedy the bias. Subsequently, Ronquist (1996) showed that Purvis’s
coding method does not succeed in removing size bias, and suggested that
this could be done by weighting the pseudocharacters from each input tree
inversely with respect to their number. Bininda-Emonds and Bryant (1998)
showed further that the size bias was with respect to the sizes of conflicting
subtrees rather than the sizes of the input trees per se. Consequently, inverse
weighting on tree size would not correct the size-related bias. Sanderson et
al. (1998) summarized that no method was known that always weighted
trees equally. Of course, this is true only for liberal-supertree methods, and
does not hold for more conservative strict and semi-strict supertree methods.
Page (2002) used a simple example to show a size bias (towards larger trees)
in MINCUTSUPERTREE that led him to propose a modification to the method.
The extent of size biases for different supertree methods is not well known.
Because the addition and/or pruning of leaves will change size, methods that
are not sizeless will not obey independence axioms.

Size bias seems like a serious problem if we want to weight trees equally.
Such equal weighting might be justified by the principle of indifference
(Keynes, 1920) if there is no basis for differential weighting of trees.
However, the principle of indifference might also be invoked to justify equal
weighting of components or of triplets. But, because larger (binary) trees
include more components and more triplets, achieving equal weighting of
these will entail unequal weighting of trees. Ronquist (1996) argued that the
size bias of MRP methods was not unreasonable because larger trees contain
more information. We are concerned with size biases in supertree methods
only to the extent that these might promote inaccuracy. If large trees were
more accurate than smaller trees in general, we would have reason to be
unconcerned, but we do not think this is the case generally. Our concern is
really that, whatever biases might exist, they should not be so severe as to
prevent supertree methods from returning relationships that appear the best
supported in terms of their frequency of replication in, or entailment by, the
input trees and any additional information on their relative strength of
support (see below).
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An interesting approach to removing size biases would be to convert
input trees with overlapping leaf sets to input trees with identical and full
leaf sets by grafting leaves onto the input trees. There might be many ways
of doing this for any given input tree, thereby defining a span of candidate
supertrees for each input tree (Bryant, 2002). Fast heuristics might be used to
generate a single “best” candidate from each input tree span that can then be
amalgamated with (e.g., majority-rule) consensus. Semple and Steel (2002)
have described a method for encoding a tree of any size with five multistate
characters, and a suggestion that has yet to be explored is that such
representations might be used to avoid size biases (Bininda-Emonds et al.,
2002)

4.3 Shapeless

Tree shape or balance (Shao and Sokal, 1990) is a characteristic of input
trees that might reasonably be considered irrelevant to their evidential
significance. We might therefore desire supertree methods that, in cases of
conflict, do not favour relationships unduly in asymmetric or in symmetric
trees. Several supertree methods are biased with respect to tree shape. For
example, in cases of conflict, standard and irreversible MRP and MRF are
biased towards relationships in asymmetric trees and Purvis MRP is biased
towards relationships in symmetric trees (Wilkinson et al., 2001, in prep.).
These biases in the MRP methods appear to stem from the use of asymmetric
distances or fit functions to define the optimal supertree.

Thorley and Wilkinson (2003) suggested that supertrees could be
conceived of as trees that minimize the sum of the distances between the
supertree and each input tree (see also Bryant, 2003). Hence, methods can
differ in the distance metric (objective function) and the typically heuristic
method used to approximate optimal trees. The distance between the
supertree and an input tree in MRP is given by the fit (parsimony steps) of
the matrix representation of the input tree to the supertree. With standard,
irreversible, and Purvis MRP this distance is asymmetric: it is not equal to
the fit of the matrix representation of the supertree (pruned of irrelevant
leaves) to the input tree (Thorley and Wilkinson, 2003). In standard and
irreversible MRP, symmetric trees have smaller distances to asymmetric
trees than vice versa, and the reverse is true of Purvis MRP (Wilkinson et al.,
in prep.). Shape bias of supertree methods has not been investigated
extensively, and it is not known to what extent failure to be shapeless
matters in practice. However, we find it difficult to conceive of any
justification for such bias and would prefer shapeless methods if they exist.
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4.4 Positionless

Wilkinson et al. (2001) presented a simple example that suggested that some
MRP methods tend to resolve conflicts in favour of more crownward
(Purvis, triplet) or basal (irreversible) positions of leaves that contribute to
the conflict. Bininda-Emonds and Bryant (1998) also noted the apparent
basal bias of irreversible MRP. As with tree shape, we find it difficult to
conceive of justifications for such behaviour and would prefer supertree
methods that have no such biases, an admittedly vaguely characterized
property we term positionless (see also Cotton and Page, 2004). Very little is
known about the extent to which existing supertree methods satisfy this
potential desideratum, and further investigation would require a clearer
conceptualization and quantification of the kind of positional relations
referred to by biologists as “more basal” or “more crownward”.

4.5 Order invariance

We might expect that supertrees should be unaffected by the order in which
input trees are processed (often termed neutrality) and, in the case of matrix
representation methods, the order of leaves in the matrix (often termed
symmetry or equality or anonymity). Neutrality and equality correspond to
properties P1 and P2, respectively, of Steel et al. (2000).
MINCUTSUPERTREE has both properties (Semple and Steel, 2000). Heuristic
methods might or might not be order invariant (e.g., use of closest versus
multiple random addition sequences in MRP, respectively), with greedy
heuristics tending to sacrifice this desideratum for speed. Order invariance is
desirable because we expect one accurate tree. However, the extent to which
relationships in supertrees actually vary with input tree or leaf order can be
determined, and could provide useful information on those relationships that
are supported robustly by the input trees and those that are not.

4.6 Uniqueness

Methods that have the property of uniqueness always return a single
supertree. Desiring a unique supertree might be seen as a natural
consequence of desiring complete accuracy (on the assumption of only one
true supertree; see Ross and Rodrigo, 2004). However, there might be good
reason to prefer a method to return multiple trees (see Lapointe and
Cucumel, 2002), such as when there are equally optimal solutions.
MINCUTSUPERTREE and the quartet-supertree methods of Piaggio-Talice et
al. (2004) are the only liberal-supertree methods that will always return a
single tree. Uniqueness can be imposed additionally on other methods by
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conjoining them to consensus methods with this property (Steel et al., 2000),
resulting in unique consensus supertrees with properties determined by both
the supertree and the consensus methods used. With quartet puzzling, use of
the majority-rule consensus to summarize the individual supertrees produced
by each iteration of the method is integral to that approach to supertree
construction.

4.7 Plenary

A plenary supertree is one that includes all the leaves of the input trees.
Desiring a plenary supertree is a natural consequence of desiring complete
accuracy. All the supertree methods that we are considering are plenary, but
those methods that return multiple trees can be rendered non-plenary through
the use of non-plenary consensus methods, such as reduced consensus
(Wilkinson and Thorley, 2003) and agreement subtrees (Finden and Gordon,
1985; Bryant, 1997). Non-plenary supertree methods might be most useful
for identifying unstable leaves, localizing conflict, and identifying areas with
ineffective overlap. The plenary axiom corresponds to property P4 of Steel
et al. (2000).

4.8 Pareto

Several important consensus axioms pertain to the extent to which
relationships in the consensus are present in the input trees and vice versa. A
consensus is Pareto with respect to a particular kind of relationship (e.g.,
clusters, nestings, triplets, among others) if all such relationships that are
present in every input tree are present in the consensus. This is a very
reasonable expectation if agreement is taken as strong surrogate for, and
evidence of, accuracy. We therefore desire Pareto supertree methods. Most
supertree methods do appear to be Pareto on one or more type of
relationship. Thorley (2000) noted that the various MRP methods are Pareto
on clusters (full splits, components); Chen et al. (2003) and Semple and
Steel (2000) showed that MRF and MINCUTSUPERTREE, respectively, share
this property, and we suggest this is true of MRC methods also (see Pisani,
2002). MINCUTSUPERTREE is also Pareto on nestings and triplets (Semple
and Steel, 2000). We conjecture that MRC and MRP methods are Pareto
with respect to the type of relationship encoded in the matrix representations
(i.e., full or partial splits), but not Pareto on less-inclusive relationships.
Thus, standard MRP is not Pareto on triplets (Thorley, 2000; Bininda-
Emonds et al., 2002; Wilkinson et al., in prep.). Steel et al.’s (2000)
properties P6 and P6' correspond to being Pareto on quartets and triplets,
respectively.
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In the supertree context, input trees can have different leaf sets so that it
might be impossible for any relationship to be present in all input trees. We
might therefore expect that all relationships in one or more input trees that
are uncontradicted by other input trees would be in the supertree. However,
Steel et al. (2000) have shown that no supertree method can have this
property for rooted trees (their P7), and we expect this to be true also of
unrooted trees. This is because, although a given relationship X might be
uncontradicted by any input tree, collections of input trees can entail
relationships contradicting X. Thus, we could weaken the condition further
to expect all relationships in an input tree that are not contradicted by other
input trees, singly or in combination, to be included in, or not contradicted
by, the supertree. The semi-strict supertree method of Goloboff and Pol
(2002) is a heuristic approach intended to satisfy this desideratum. It is
unclear to what extent liberal, conflict-busting supertree methods do so,
however.

4.9 Co-Pareto

A consensus is co-Pareto with respect to a particular kind of relationship if
every relationship of that kind that is present in the consensus tree is present
in one or more input trees. Consensus methods that do not obey this axiom
are problematic if we consider that relationships that do not occur in any
input tree are unsupported. In general, it is not reasonable to expect supertree
methods to be co-Pareto because they might reasonably contain relationships
that are entailed by the input trees in combination, but are not present in any
of them singly. However, standard, irreversible, and Purvis MRP are not co-
Pareto on clusters or on triplets even in the special (consensus) case of input
trees with identical leaf sets (Wilkinson et al., in prep.), where this
requirement is reasonable.

If a method is co-Pareto, it ensures that any given relationship in the
supertree is contained (displayed, included) in at least one input tree, and,
therefore, that the relationship is compatible with at least one input tree. A
weaker requirement is that each relationship is compatible with at least one
input tree. A still weaker requirement is that no relationship in the supertree
should be contradicted by all the input trees (in which case it also cannot be
present in or entailed by any of them), or at least those input trees with leaf
sets that make contradiction a logical possibility. We know that standard,
irreversible, and Purvis MRP supertrees do not, and that MRC supertrees do
satisfy this weakened co-Pareto axiom with respect to the kind of
relationship encoded in the matrix representation and all relationships of
lower cardinality (Wilkinson et al., in prep.).
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On the one hand, if a liberal supertree is conceived of as some sort of
average or representation of central tendency of the input trees (Lapointe and
Cucumel, 1997), then all contradicting relationships might be an acceptable
compromise between conflicting relationships in the input trees. On the other
hand, there would seem to be no good reason for a supertree to include any
relationship that is contradicted by all the input trees because there is no
obvious evidence for that relationship and clear counterevidence. We are
concerned that relationships that contradict all the input trees are not likely
to be accurate. Given that accuracy is our ultimate aim, we prefer supertrees
that obey the weakened co-Pareto axiom. We consider methods that resolve
conflict in favour of the best-supported alternatives present or entailed by the
input trees as more likely to be accurate.

4.10 Weightable

We might have reason to consider some input trees, or some relationships in
some input trees as better supported than others. Indeed Purvis (1995b:406)
considered that “Because different kinds of source tree differ in their
likelihood of being right, equal weighting of source trees cannot be defended
(Barrett et al., 1991).” An obvious and important desideratum for supertree
methods is their capacity to use information on relative support for, or
quality of, a given hypothesis so that this information can play its part in
resolving conflicts in the input trees. Weighting of input trees, or of
particular relationships of input trees, can be achieved to some degree by all
methods. The simple expedient of replicating input trees allows all liberal
methods to use differential tree weights. MRD accommodates information
on support provided by branch lengths in input trees (Lapointe and Cucumel,
1997). Matrix-representation methods using discrete pseudocharacters are
amenable to differential weighting of the type of relationship encoded in the
matrix representation. Thus, weighting schemes can be used that reflect
measures of support for components or triplets, such as bootstrap proportions
(Felsenstein, 1985; Wilkinson, 1996) or decay indices (Bremer, 1988;
Wilkinson et al., 2000; Donoghue et al., 1992). Ronquist (1996) argued the
virtues of differential weighting in the context of MRP, and simulations
suggest that weighting in this context can improve accuracy (Bininda-
Emonds and Sanderson, 2001).

4.11 Assessable

In phylogenetic analysis, support is a much-used surrogate for accuracy. We
have more faith in well-supported relationships and we endeavour to provide
indices of support for relationships in phylogenetic trees. That the support
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for relationships in phylogenetic supertrees should be analogously assessable
is another obvious desideratum. The quartet-puzzling approach to supertree
construction provides support indices directly from the variance in output
trees arising from random variation in the choice of starting tree, order of
addition of leaves, and the breaking of ties. MRD yields supertrees in which
branch lengths reflect relative support (Lapointe et al., 1994; Lapointe and
Cucumel, 1997; Wilkinson et al., 2003).

All supertree methods can be investigated with one or more methods
designed to yield indices of support, and this is to be encouraged. For
example, some authors have reported decay indices (Bremer support) for
clades in MRP supertrees (e.g., Bininda-Emonds et al., 1999; Liu et al.,
2001; Pisani et al., 2002), although the utility of this particular support index
has been questioned (Pisani et al., 2002). Methods such as the bootstrap and
jackknife could be used with all supertree methods, but a question arises as
to what should be resampled. It seems natural that we would resample input
trees, as suggested by Lapointe and Cucumel (2003) for assessing consensus
trees. It is possible also to resample pseudocharacters in matrix
representations. The latter approach was used by Purvis (1995b) who
nonetheless noted that pseudocharacters derived from a single input tree are
not independent. An additional potential problem with bootstrapping
pseudocharacters rather than trees is that those input trees that yield more
pseudocharacters (e.g., because of their large size) will tend to contribute
disproportionately to the resampled data.

There are many techniques that are used to evaluate phylogenetic
hypotheses inferred from primary data. We can expect that analogues of
some of these will be used increasingly as the field of supertree construction
matures. With methods that employ objective functions, we envisage the
development and use of randomization tests of the null hypothesis that the fit
of the input trees to the supertree is no better than expected by chance alone,
(i.e., from randomly permuted trees; Creevey et al., submitted). Rejecting
the null hypothesis would be a minimum requirement for supertrees to be
taken seriously. Randomization tests might also be used to identify
significant outliers within sets of input trees (Lapointe and Cucumel, 2003;
see also Daubin et al., 2002). Additional assessment of supertrees might be
attained using multiple supertree methods, particularly if we have no good
basis for choosing between the alternative methods, on the basis that
disagreement is suggestive of weakly supported inferences. Purvis and
Webster (1999) compared standard and Purvis MRP, and found that the
methods tend to agree, but that they disagree more as conflict in the input
trees increases. Several workers have explored a range of weighting regimes
to explore the robustness of real supertrees (e.g., Purvis, 1995b; Bininda-
Emonds et al., 1999; Lapointe and Kirsch, 2001; Liu et al., 2001).
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Alternative weighting schemes that reverse known or suspected biases might
be particularly useful when methods that are known to be biased are used.

5. Practicality

To be at all useful, a supertree method must be practical. Generally, methods
are used only when the major steps are implemented in software. There is
considerable variation in the ease of implementing any of the methods at the
present time, and we expect progress to be sufficiently rapid as to ensure that
any discussion will be out of date. Thus, we do not discuss the
implementation of methods here save to repeat a previous warning that
applicability in practice should not be confused with acceptability in
principle (Wilkinson et al., 2001).

5.1 Speed

It has been stressed that supertree methods avoid difficulties of combining
different data types (Sanderson et al., 1998; Bininda-Emonds et al., 2002),
giving them a clear advantage over the alternative pathway to large trees,
namely the phylogenetic analysis of combined data. They can also offer
advantages in speed. It might be faster to assemble sets of input trees than to
combine data, in which case this initial speed advantage is shared by all
supertree methods. MINCUTSUPERTREE is a polynomial-time algorithm
(property P5 of Steel et al., 2000) that fulfils our desire for speedy analyses.
By contrast, computational complexity increases exponentially with the
number of leaves for all matrix representation methods. This necessitates the
use of heuristics, and even the MINCUTSUPERTREE method can be conceived
of as a heuristic for finding supertrees that minimize the sum of triplet
distances to the input trees, and thus closely related to triplet MRP / MRC.
Note that methods that rely on heuristics to approximate the best supertrees
under some objective function need not satisfy desiderata satisfied by the
exact method (Steel et al., 2000). Given that most matrix representation
methods use the same approaches and programs that are used in analyses of
combined data, they would appear to offer no clear benefit in terms of speed
over combined analyses of data.

5.2 Generality

A reasonable desideratum of all methods is that they not be restricted to
special cases, particularly if those special cases are not often encountered in
practice. This is not to say that a less general method would not satisfy other
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desiderata that make it the method of choice in a specific context. Several
supertree methods have been developed for the special case of input trees
that do not conflict and cannot be applied to the more usual case of
conflicting input trees (e.g., Aho et al., 1981; Gordon, 1986; Steel, 1992;
Thorley and Wilkinson, 2003).

Steel et al. (2000) have shown that some combinations of desirable
properties of supertree methods can be satisfied only in the special case of
rooted trees (or of trees sharing some other leaf in common). Despite major
theoretical limitations, if some or all of the potential input trees are unrooted,
we would still like to have methods capable of exploiting this potential.
Purvis MRP cannot be applied to unrooted trees because the matrix
representations encode sister-group relationships and these are defined only
in rooted trees. Similarly restricted to rooted trees are methods where the
objective function can be interpreted as the sum of the triplet distances
between the input trees and the supertree. This includes the
MINCUTSUPERTREE method, which, like the Adams consensus, is defined
only for rooted trees.

Quartet methods and MRD are more general in being applicable in
principle to both rooted and unrooted trees. Path-length distance matrices
usually represent unrooted trees, but are applicable equally to rooted trees
and are invariant with respect to different rootings. By contrast, ultrametric-
distance matrices are always associated with rooted trees. Although most
supertree construction has been done using rooted input trees and standard
MRP, this method is also more general. In practice, matrix representations
can be constructed for unrooted trees and combined with each other, alone or
with matrix representations of rooted input trees. Unlike rooted trees, there
are multiple equivalent matrix representations because, in the absence of a
root with a fixed (but arbitrary) pseudocharacter state code, the assignment
of pseudocharacter states to the subsets defined by the split is arbitrary and
can be reversed with no loss of meaning. Use of any one matrix is arbitrary.
This is unimportant in the case of standard (and quartet) MRP, but the results
with irreversible parsimony will depend on the arbitrary choice of matrix
representation, and we consider this undesirable in principle.

6. Discussion

The field of supertree construction is still young and would benefit from
further discussion and clarification of what is expected of good liberal-
supertree methods and the extent to which these expectations can be
satisfied. This would be a useful prelude to the identification or development
of good supertree methods that can be used in practice. Here, we have
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discussed a few properties that might be considered supertree desiderata and
highlighted some examples of methods that we know or conjecture do not
satisfy these desiderata. We remain largely uncertain to what extent any
failure to display these properties is important in practice, something that can
be addressed through empirical or simulation studies. In addition, the
important work of Steel et al. (2000) notwithstanding, the tasks of
determining thoroughly which existing methods have these or other
properties, of determining the compatibility of different desiderata, and of
designing novel supertree methods with particular desirable properties await.
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