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Abstract. Phylogenetic analysis is an area of computational biology concerned with the reconstruction of
evolutionary relationships between organisms, genes, and gene families. Maximum likelihood evaluation has
proven to be one of the most reliable methods for constructing phylogenetic trees. The huge computational
requirements associated with maximum likelihood analysis means that it is not feasible to produce large phy-
logenetic trees using a single processor. We have completed a fully cross platform coarse-grained distributed
application, DPRml, which overcomes many of the limitations imposed by the current set of parallel phyloge-
netic programs. We have completed a set of efficiency tests that show how to maximise efficiency while using
the program to build large phylogenetic trees. The software is publicly available under the terms of the GNU
general public licence from the system webpage at http://www.cs.nuim.ie/distributed.
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1. Introduction. Phylogenetic analysis is a branch of molecular biology that is con-
cerned with the reconstruction of evolutionary relationships between organisms, genes,
and gene families. The knowledge gained from the construction of accurate phylogenies
can be crucial in understanding such things as the origins of biochemical pathways,
regulatory mechanisms in cells as well as the development of complex systems. Given
a set of taxa (molecular sequences usually comprising of genes or gene products) and a
DNA substitution model, the task is to find the phylogenetic tree that most accurately de-
scribes the evolutionary relationships between the taxa. However, the decision problem
associated with searching for the best tree from a given set of taxa is NP-complete [1].
Many authors have proposed greedy heuristic solutions in an attempt to reduce the ef-
fective search space [2]—[7]. These algorithms have made the process of producing large
phylogenetic trees possible using only a single processor. However, these greedy heuris-
tic algorithms often only take the best immediate, or local, solution resulting in a final
tree that is far from optimal. The stepwise insertion approach combined with maximum
likelihood (ML) evaluation has proved to be especially accurate for building molecular
phylogenies. Felsenstein was the first to bring this framework to nucleotide-based phy-
logenetic inference [8]. Numerous computer studies [9]-[13] have shown ML programs
canrecover the correct tree from simulated data sets more frequently than other methods.
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In a recent study timing the evolution of the HIV-1 virus [14], it was demonstrated that
ML techniques can be effective in solving important biological problems. The single fac-
tor that is currently limiting the widespread use of ML techniques is the computational
requirements [15]. The huge computational requirements associated with ML analysis
means that it is not feasible to produce phylogenetic trees for any more than a small
number of taxa using a single processor.

A number of specialised parallel ML phylogenetic programs have been developed to
address this issue [16]-[18]. These programs have been very successful in speeding up
the process of constructing large phylogenetic trees using ML. However, the overriding
limitation associated with each of these programs is the specialised hardware and soft-
ware often required to run these programs. For most researchers, this can make these
programs either prohibitively expensive or simply too complicated to set-up. Further-
more, these programs are often implemented in a platform-dependent language which
imposes a restrictive limit on the numbers and types of machines that can be used in a
parallel computation. It should also be noted that some of these earlier parallel programs
only allowed the user to choose from a very limited number of DNA substitution mod-
els, which often leads to a poor model fit resulting in sub-optimal trees. Therefore, in
our opinion, the three most essential requirements of any generally usable parallel tree
building program must be: that the program should not require any sort of specialised
or expensive parallel hardware, should only require the most basic technical abilities to
set-up and use, and should allow the user to choose from an extensive list of molecular
evolution models. Currently there is no parallel phylogenetic tree building program that
fulfils all of these requirements.

We have developed a fully cross platform distributed application, called Distributed
Phylogeny Reconstruction by Maximum Likelihood (DPRml), which we believe to be
one of the most general, while powerful, likelihood-based phylogenetic tree building pro-
grams currently available. It satisfies each of the three requirements outlined above. The
generality of our program is demonstrated by the fact that DPRml, written in Java, can run
on virtually any architecture and operating system simultaneously while only using the
spare clock cycles of donor machines. No specialised computer hardware is required, and
no expense is incurred if idle computing resources are harnessed. This would not be as
straightforward for a distributed application written in a native language because the ap-
plication would have to be compiled for each particular architecture and operating system.
We have demonstrated the ease of use and platform heterogeneity of DPRml with exper-
iments that utilise the spare computing resources of several different architectures and
operating systems simultaneously. The user has a very straightforward configuration file
with which to tailor the computation and can choose from one of the most extensive ranges
of DNA substitution models currently available. Our efficiency analysis shows a user how
to make the most efficient use of their spare clock cycles to build large phylogenetic trees.
DPRml implements an already proven tree building algorithm [16], [19] and uses the
popular Phylogenetic Analysis Library (PAL) v1.4 [20] for all its likelihood calculations.
A more detailed description of the bioinformatics element of DPRml is available in [21].

The rest of the paper is organised as follows. In Section 2 we introduce the DPRml
algorithm in detail. Section 3 describes the Java distributed computing platform used by
DPRmlI. The results of our experimental evaluation are presented in Section 4 and we
conclude in Section 5.
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2. Coarse-Grained Algorithm. One of the first programs to use ML techniques to
build phylogenetic trees was DNAmlI [8]. This was improved and extended in the popular
phylogenetic program fastDNAmI [19]. A parallel version of this program was recently
completed [16]. We have taken the tree building algorithm used by parallel fastDNAml
and have implemented a platform-independent, distributed, and much more generalised
version of the program. Our distributed algorithm is client—server based (see Section 3
for more details of the distributed system design) and operates in a number of stages
just like parallel fastDNAmI. At every stage a number of new trees are generated and
sent to donor machines to have their branch lengths optimised (optional) and likelihood
calculated. The DPRml distributed algorithm is described in Figure 1.

The parameters m and v are contained in the parameter file. Step 1 of the algorithm is
alocalised version of the overall algorithm outlined in steps 2—7. A single donor machine
builds an initial tree for m minutes (default value is 30 minutes) and returns this tree to the
server. The size of the tree built by this initial step depends on several factors such as the

procedure DPRml ( MODELTEST file, FASTA DNA or RNA file,
parameter file )

l. Construct an initial tree for m minutes on a single donor
machine

2. Take the current best tree and add another taxon to every
topologically distinct place of the current
best tree (generating 2i —5 trees, for i" taxon being added to
the tree - see Section 2.1)

3. Send each of the generated trees to donor machines to have
their branch lengths optimised (optional) and likelihoods
calculated

4. Take the best tree from step 3 and perform local
rearrangements crossing up to v vertices (see Section 2.2)

5. Send each of the generated trees to donor machines to have
their branch lengths optimised (optional) and likelihoods
calculated

6. If the best tree from step 5 has a greater likelihood than
the best tree from step 3, then rearrange again and send each
of the generated trees to donor machines to have their branch
lengths optimised (optional) and likelihoods calculated.
Repeat this step until there is no improvement in the
likelihood of the best tree

7. If there are more taxa left to add to the tree then goto step
2, else goto step 8

8. If the user chose not to optimise branch lengths throughout
the computation then send the best tree to a donor machine to
have its branch lengths optimised, else goto step 9

9. Output the best tree

end procedure

Fig. 1. A pseudocode description of the DPRml algorithm.
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complexity of the substitution model, diversity of the sequences, the number of positions
per sequence, and the CPU speed of the donor machine. Due to the network overhead, it
is more efficient to build this initial tree on a single donor machine than to distribute this
part of the computation. The inputs to the application are a MODELTEST [22] output
file, a FASTA sequence file (DNA or RNA), and an input parameter file. MODELTEST
is a popular application among molecular biologists that uses hierarchical hypothesis
testing to find the DNA substitution model that most accurately fits a given dataset.

The outputs of the program are a New Hampshire format tree file, a PAL tree object
file, a human readable tree (text file), and the likelihood of the final tree. We have
provided a remote interface to the system that makes it possible to monitor the progress
of the application in real-time as it builds the phylogenetic tree. The input parameter
file lets the user set various run-time options for the computation such as the maximum
number of vertices that rearrangements can span, whether to keep a copy of the best
tree from every stage or just the best tree from the previous stage, whether or not to add
the taxa in a randomly generated order, and whether to optimise the branch lengths of
every tree that is generated or just optimise the final tree. The input file also gives the
user the option to continue building a partially complete tree. Log files included with
each set of results make it possible to examine fully and track the entire tree building
process.

2.1. Substitution Models. Probabilistic models of nucleotide substitution are central
to the accurate reconstruction of complex evolutionary relationships [23]. These models
are used in phylogenetic analysis to describe changes in character state, i.e., the rate
of change from one nucleotide to another. The evolutionary process is modelled as an
evolutionary Markov process [24], also known as a substitution model. Markov models
assume that there is no “memory” in the system, therefore only the instantaneous state of
a character is important. The probability of change from state i to state j depends upon
the amount of time that has passed and the substitution rate. Well determined time points
are not usually available for molecular data so the product of rate and time (equivalent to a
genetic distance) is more commonly used. Critical to models of nucleotide evolution is the
realisation that because there are only four possible character states, it is expected that as
genetic distance increases, some sites will undergo multiple superimposed substitutions.
Simple measures of distance that do not take multiple substitutions into account are said
to be uncorrected. Corrected distances use one of several models of sequence evolution
to estimate the number of sites that have undergone multiple substitutions.

A few of the most popular DNA substitution models currently in use are (listed
in ascending complexity) JC69 [25], Kimura-2-Parameter model [26], HKYS85 [27],
TN93 [28], and the General Time Reversible model [29]. All of the models mentioned
assume that each position is evolving independently and identically. However, this is
rarely the case, therefore each of the models above can incorporate a site to site rate
variation also. Two of the most popular rate variation models are the Invariable sites
model [30] and the Gamma distribution model [31]. One of the common limitations of
the current set of parallel phylogenetic tree building programs is that they only support a
very limited number of substitution models and very few support site to site rate variation.
As mentioned above, MODELTEST tests one of the most extensive libraries of DNA
substitution models (including site to site rate variation) against a dataset in order to find
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Fig. 2. Adding a fourth taxon to a three taxa tree produces three new trees.

the most suitable substitution model. DPRml supports all of the substitution models that
MODELTEST v3.06 provides.

2.2. Add Taxon Stage. The tree building algorithm described above is based on a
stepwise insertion approach of adding new taxa to the phylogenetic tree. Initially the
algorithm starts by constructing an unrooted bifurcating tree with three taxa (only one
topology is possible—see Figure 2). A new taxon is then added to every topologically
distinct place of this initial tree. In the general case, this process produces 2i —5 trees, for
the ith taxon being added to the tree. All of the trees produced are then evaluated using
ML. The ML method computes the likelihood of obtaining the observed sequence with a
given tree topology, assigned branch lengths, and a given evolutionary model. Since the
likelihood is typically a very small value, the tree with the greatest log likelihood is kept.

2.3. Rearrange Tree Stage. Animportant part of the algorithm is the internal rearrange-
ments that are made to the best (most likely) tree during each iteration of the algorithm.
By repeatedly rearranging the best tree until there is no improvement in the likelihood,
the thoroughness of the search of the overall tree space is greatly increased. This is done
by moving each subtree across one or more internal branches of the tree. The user spec-
ifies the maximum number of internal branches that rearrangements can span. Figure 3
is an example of a rearrangement spanning one internal branch of the tree. A higher
number of internal branches being spanned by rearrangements will result in more trees
being generated and will increase the overall running time of the program. However, a
lower number will result in a lesser proportion of the tree space being searched and will
increase the chance of a sub-optimal tree being produced.

2.4. Algorithm Suitability for Distributed Computing. Our initial work on this applica-
tion involved performing an investigation on how suitable ML-based phylogenetic tree
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building is to distributed computing. We decided on two main criteria that any problem
had to fit in order to be suitable for a distributed implementation. Firstly, the problem had
to fit the class of “coarse-grained” parallel problems. As can be seen from the algorithm
above, each stage of the computation produces a set of trees that must have their branch
lengths and likelihood calculated. These tasks can be done completely independently
on different sites for every tree without interaction required between any two likelihood
computations.

The second criterion for evaluating the suitability of phylogenetic analysis to dis-
tributed computing was that the problem must display a high “compute-to-data” ratio to
make it worthwhile sending the data over a network rather than computing locally. In our
efficiency analysis (see Section 4) the dataset that we used consisted of 101 taxa and was
less than 200 KB in size. The small size of the data files involved coupled with the long
computation times of ML analysis make this problem ideal for distributed computing.

3. Implementation. DPRml is just one of a number of applications [21], [32] that
runs on our general purpose distributed computing platform. Our distributed computing
platformis loosely based on the design of the Java Distributed Computing Library (JDCL)
[33], [34] but offers much greater functionality, flexibility, and usability. The overall
design of the system is based on the client—server model [35]. This model describes a
system consisting of a single server computer and a number of client computers. The
clients can connect over a network to the server. The server controls a resource (such
as a database, algorithm, or computer hardware) and the clients initiate requests to the
server for access to the resource. Our system is divided into three separate pieces of
software: server, client, and remote interface. An overview of the system is illustrated in
Figure 4. The server stores the problem (for example, molecular data and an algorithm
to process it) and breaks the problem down into smaller problems, called data units. The
client software is installed on each donor machine and it connects to the server over the
Internet. A client requests a data unit, performs the processing, returns the result to the
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Fig. 4. Diagram of complete system. Although all communication is bi-directional, the arrows indicate the
direction of initiation of communication.

server, and requests another data unit. Multiple clients can make such requests to the
server. The server collates the results of the data units from the clients and constructs
the result to the larger, original, problem. The remote interface is used to access all
functionality on the server such as adding and removing problems, downloading result
files, monitoring progress of computations, changing the priority of problems in the
system, and viewing server statistics. Here are a few of the novel features of our system:

— Portability: The entire system is completely network and platform independent.

— Scalability: New clients can be added and removed from the system dynamically.

— Expandability: The server has the ability to run several different distributed computa-
tions simultaneously.

— Longevity: Remote updating of client software is supported.

— Real-Time Updates: Remote real-time problem progress updates are available to users.

— Secure: The security of the server and donor machines from subversive distributed
applications is guaranteed.

— Heterogeneous: An adaptive scheduling algorithm dynamically matches the donor
machines with work units that match their computational capacity.

— Remote Control: Complete control of all server functionality is possible remotely over
the Internet.

— Dynamic Job Priorities: Priority of jobs can be changed dynamically to allow problems
to be allocated greater or lesser fractions of the overall available processing power.

— Ease of set-up: The entire system comprises of only three executable Java JAR files.

— Modular design: New scheduling algorithms can be implemented without any changes
required to the rest of the system or existing distributed applications.
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The server, client, and remote interface consist of single executable Java JAR files that
can be run from the command line. There are a few different ways that the client software
can be deployed. To maximise the usage of our semi-idle desktop PCs, we choose to run
the client as a low priority background service. This means that even if there is nobody
logged on at a donor machine, the client software can run in the background 24 hours a
day using the spare clock cycles. In our deployment of the system, we have our client
software running on 180 desktop PCs (various hardware specifications from Pentium
IIs up to Pentium I'Vs) running multiple operating systems (Windows 98/NT/2000/XP,
Linux - Gentoo, Debian, Fedora). To illustrate the portability of our system, we have
also installed our client on every node of an IBM Linux cluster (32 Dual P4 1 GHz
nodes with 512 MB memory per node) with the desktops and cluster nodes connecting
to a single server. We consistently perform approximately 3 Pentium years of processing
each week.

3.1. Distributed Programming Model. As part of our general purpose distributed plat-
form, we have designed a general purpose programming interface that allows a user to
distribute arbitrary computations among a set of donor machines. To set-up a distributed
computation, two Java classes must be extended. These are the Algorithm class and
the DataManager class. Each of these parent classes are part of the system. The de-
veloper must overwrite and implement certain methods in order to set-up a distributed
computation [36].

To implement the phylogenetic tree building algorithm, we partitioned the algorithm
outlined in Section 2 into two sets of functionality, code that runs on the server and
code that runs on the clients. The Algorithm class, which runs on the donor machines,
contains four separate methods. The first method builds an initial tree for m minutes
using a localised version of the overall tree building algorithm (default value for m is
30 minutes). The second method takes a set of trees and a substitution model, optimises
the branch lengths of each tree (optional), computes the likelihood of each phylogenetic
tree, and returns the tree with the greatest likelihood to the server. The third method takes
the final tree and optimises the branch lengths of this tree. This method is only executed
when the user chooses not to optimise the branch lengths of every tree throughout the
computation. The last method takes a tree and performs internal rearrangements on the
tree crossing up to a specified number of branches, thus producing a number of new
trees. Parameters are sent with each data unit to identify which method to execute on the
downloaded data.

The DataManager runs on the server and manages the overall computation. The
Constructor method reads in, parses, checks the validity of the inputs to the program,
and sends the data to one donor machine to create the initial tree. We divided the tree
building algorithm into different stages. The generateDataUnit () method simply
makes a call to the current stage object and requests a data unit for a donor machine to
process. If there are no more trees to be evaluated, the stage object returns null. The
processResults () methodiscalled every time aresults setis received. The results are
sent to the current stage object and when the stage object returns true, the DataManager
takes the best tree from the current stage and transitions to the next stage of the tree
building algorithm. The adjustUnitSize () method is used by the distributed system
to dynamically alter the granularity of the data units in an attempt to keep the average
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processing time within v% of the optimal unit time ¢ (default values for v and ¢ is 15%
and 1 hour, respectively). The get Status () method sends useful information about
the current state of the computation to the remote interface, allowing the user to get
real-time feedback on the progress of their computation. The closeResources ()
method, called when the problem is being removed from the distributed system, ensures
that there are no tree generation threads still running.

4. Experimental Evaluation. We performed a full set of performance tests using the
dataset that was used to benchmark parallel fastDNAmI [16]. This dataset consists of
three individual sets of taxa consisting of 50 taxa, 101 taxa, and 150 taxa that are 1858
(50 and 101 taxa) and 1269 (150 taxa) nucleotide positions in length. In our tests we
used the HKY [27] DNA substitution model with the same three Ts/Tv ratio parameters
as were used by parallel fastDNAmI. We examined several trees constructed by DPRml
using this dataset and found that there were only minor differences due to the differing
randomisation of the taxa addition order. Several of the trees produced are available
from the system webpage. For all of our performance tests, we ran a version of the
program that adds the taxa to the tree in the same order each time (so that the scaling
behaviour of the program could be clearly understood) and the program was configured
to optimise the branch lengths of every tree generated. The maximum number of vertices
that rearrangements could cross was set to five.

4.1. Single Problem Speedup Analysis. To analyse the speedup that can be gained by
running DPRml, we ran a single instance of DPRml on the distributed system with
differing numbers of clients and noted the total running time in each case. For these
particular tests, the set of clients consisted of two university computing laboratories with
a total of 60 desktop PC,Ads (each machine was a Pentium IV 2.4 GHz with 512 MB
of RAM running either Windows 2000 or Redhat Linux 7.0). Our server resided on a
Pentium III 600 MHz with 256 MB of RAM running Debian Linux with a 10 Mbit/s
connection to the laboratories. We had our client installed as a low priority background
service and the PCs were in use, and were being rebooted between operating systems
during teaching hours. The graphs show the corresponding mean running time decrease
(Figure 5) and speedup gained (Figure 6) over two runs for each point on the graphs. The
main factor limiting the scalability of the program is the synchronisation barrier created
by the staged nature of the algorithm. If any of the donor machines are unexpectedly
switched off, DPRmlI must wait for the distributed system to detect this and redistribute
the data to another donor machine before it can proceed to the next stage of the algorithm.
Figure 6 shows that DPRml scales extremely well, with the speedup increasing with an
increase in dataset size. This is consistent with the findings of a special purpose parallel
phylogenetic program [16]. For this particular dataset, it is expected that the speedup
gains should plateau at approximately 150 processors because at this point the number
of processors would equal the number of trees being generated at many of the stages.
This would also be the case for any other parallel tree building program.

4.2. Multiple Problem Efficiency Analysis. A simple examination of the tree building
algorithm outlined in Section 2 reveals a number of clearly identifiable stages within
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Fig. 5. Decrease in computation time with an increase in the number of processors over each of the three
datasets (50, 101, and 150 taxa). The average over two runs for each dataset is shown.

the algorithm. At each stage, a number of phylogenetic trees are generated from the
current best tree and each tree must be evaluated by a donor machine before the next
stage of the algorithm can commence. Therefore the main factor limiting the parallel
efficiency of the program is the synchronisation barrier that is created by the staged
nature of the algorithm. One way of maintaining a high throughput in the distributed
system is to run several DPRml computations simultaneously. Researchers generally
run the same computation multiple times and take the best overall result, due to the
stochastic nature of this heuristic method, so running multiple DPRml computations in
parallel mirrors the expected usage of the program. Ideally, to maximise efficiency, each
computation would be at a different stage in the tree building algorithm and therefore

60 T T
Linear Speedup
551 O  50Taxa i
X 101 Taxa
50+ Vv 150 Taxa 4
451 B
40+ 4
o 350 g
3
°
3 30+ 4
o
2]
251 5
v
201 @
151 Q b
101 b
5| 4
I I I 1 I I 1 I 1 1 1
5 10 15 20 25 30 35 40 45 50 55 60

Number of Processors

Fig. 6. Speedup achieved over each of the three datasets (50, 101, and 150 taxa). The average over two runs
for each dataset is shown. Linear speedup is the theoretical maximum for parallel algorithms.
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should result in consistently higher overall throughput. We were also interested in the
extent to which an increasing number of DPRml computations would affect the rate at
which the phylogenetic trees are built.

To investigate these two related issues, we obtained one of the datasets that was used to
test parallel fastDNAml [16], consisting of 101 taxa (1858 nucleotides per taxa), and we
ran varying numbers of DPRml computations on the system while keeping the number
of donor machines fixed. The program was configured to optimise the branch lengths
of every tree generated and the maximum number of vertices that rearrangements could
cross was set to five. The set of clients consisted of a university computing laboratory with
atotal of 44 desktop PCs (each machine was a Pentium IV 2.4 GHz with 512 MB of RAM
running Windows 2000). Our server resided on a Pentium III 600 MHz with 256 MB of
RAM running Debian Linux with a 10 Mbit/s connection to the laboratory. Using the
distributed system log files, we analysed the state of the system when varying numbers
of instances of DPRml were run in parallel over a 24 hour period (see Figures 7-12).

Efficiency is the percentage utilization of processing resources, e(t) = p(t)/(t x n)
where ¢ is the current time and ¢ = 0 at the start of the computation, n is the number of
clients, and p(¢) is the total processing time performed by clients up to time ¢. Figure 7
shows the efficiency of the system with a varying number of problems. DPRml is a
staged computation, thus when there is only one problem in the system, processors are
quite often idle (see Figure 8). When five problems are processed in parallel the efficiency
improves dramatically (as can be seen in Figure 7), and the number of idle processors is
consistently low (see Figure 9).

The evidence from Figure 7 would suggest that for this particular dataset and set
of donor machines, running approximately five tree building computations in parallel
will utilise the system resources efficiently. After 20 problems there is very little gain in
efficiency with the addition of more problems.

Figure 10 shows that as efficiency goes up, the percentage of time processors are idle
goes down (as expected). The communication overhead also increases approximately
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Fig. 7. The percentage efficiency of processor utilization over a 24 hours period with a varying numbers of
problems.
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Fig. 8. A trace of the number of idle clients over 24 hours with one problem in the system.

linearly with the increasing numbers of problems (see Figure 11). The compute-to-data
ratio is consistently high, even when 20 problems are being processed in parallel, which
provides evidence to support the scalability of this problem on this distributed system.

Figure 12 shows that increasing the number of tree building computations from 1 to
20 affected the average size of the trees built over 24 hours, but dramatically increased
the efficiency of the system (and conversely reducing the amount of time processors
were idle).

This result fits well with the expected usage of the program. As the algorithm outlined
in Section 2 is stochastic, it is possible to become trapped in a local optimum, rather than
a global one. Typically, a biologist would repeat the entire tree building process with
several different randomizations of the order of taxa and then compare the best of the
resulting trees to determine a consensus tree [37].
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Fig. 9. A trace of the number of idle clients over 24 hours with five problems in the system.
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5. Conclusion. Due to the recent explosion in the size of sequence databases, there
is increased interest in producing very large and accurate phylogenetic trees using ML.
For a large number of taxa, it is not possible to perform an exhaustive search of the
tree space. Many authors have proposed heuristic algorithms aimed at speeding up the
process of constructing phylogenetic trees. However, many of these algorithms do not
perform a sufficiently rigorous search of the tree space and often result in sub-optimal
trees. Therefore a number of researchers have developed specialised parallel programs
in an attempt to perform a more complete search of the tree space and thus produce more
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Fig. 11. The percentage communication overhead and the compute-to-data ratio with a varying numbers of
problems after 24 hours.
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Fig. 12. The average number of leaves in a tree, with a varying numbers of problems, after 24 hours.

accurate phylogenetic trees. We have expressed a number of limitations of these parallel
programs that are currently severely limiting the widespread use of parallel computing
in phylogenetic analysis.

Distributed computing offers inexpensive access to large amounts of computing
power. We have identified the suitability of phylogenetic tree construction to coarse-
grained distributed computing. We have completed a distributed and fully cross platform
phylogenetic tree building program called DPRml. DPRml uses an already proven tree
building algorithm and popular phylogenetic analysis library. The usability and gener-
ality of our program is demonstrated by the ease of use and platform heterogeneity of
DPRml. The user can choose from one of the most extensive ranges of DNA substitution
models currently available. We have shown how DPRml can be used to make the most
efficient use of available spare clock cycles to build large phylogenetic trees. The final
outputs of the program are in standard formats that allow the user to perform further
manipulation and analysis of results using other phylogenetic packages.

This is the first release of DPRml and we have identified a number of areas that warrant
further research and development. We would like to investigate possible ways of further
improving speedup. For example, Ceron has devised a scheme whereby the list of trees
to be issued is calculated in advance [38], thus reducing the limiting influence of the
synchronisation barrier. As new features and algorithmic improvements appear in later
versions of PAL [39], we will release updated versions of DPRmI on our webpage to take
advantage of the improvements. Finally, we would like to extend DPRml to construct a
number of trees using a single dataset and then output the overall consensus tree [37].
DPRml is freely available under the terms of the GNU General Public Licence. There is
also a user manual available for download from the system webpage.
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